Nitrous oxide emission from riparian buffers in relation to vegetation and flood frequency.
نویسندگان
چکیده
The nitrate (NO(3)(-)) removal capacity of riparian zones is well documented, but information is lacking with regard to N(2)O emission from riparian ecosystems and factors controlling temporal dynamics of this potent greenhouse gas. We monitored N(2)O fluxes (static chambers) and measured denitrification (C(2)H(2) block using soil cores) at six riparian sites along a fourth-order stretch of the White River (Indiana, USA) to assess the effect of flood regime, vegetation type, and forest maturity on these processes. The study sites included shrub/grass, aggrading (<15 yr-old), and mature (>80 yr) forests that were flooded either frequently (more than four to six times per year), occasionally (two to three times per year), or rarely (every 20 yr). While the effect of forest maturity and vegetation type (0.52 and 0.65 mg N(2)O-m(-2) d(-1) in adjacent grassed and forested sites) was not significant, analysis of variance (ANOVA) revealed a significant effect ( < 0.01) of flood regime on N(2)O emission. Among the mature forests, mean N(2)O flux was in this order: rarely flooded (0.33) < occasionally flooded (0.99) < frequently flooded (1.72). Large pulses of N(2)O emission (up to 80 mg N(2)O-m(-2) d(-1)) occurred after flood events, but the magnitude of the flux enhancement varied with flood event, being higher after short-duration than after long-duration floods. This pattern was consistent with the inverse relationship between soil moisture and mole fraction of N(2)O, and instances of N(2)O uptake near the river margin after flood events. These results highlight the complexity of N(2)O dynamics in riparian zones and suggest that detailed flood analysis (frequency and duration) is required to determine the contribution of riparian ecosystems to regional N(2)O budget.
منابع مشابه
Managing the effects of riparian vegetation on flooding
~ The major effect of removing riparian vegetation and wood from streams has been the changes in channel form (widening, deepening and straightening) that have occurred. It is important to consider that we are returning vegetation to a channel system that now has a much larger flow capacity. ~ The major hydrological effect of returning vegetation to streams is via its influence on roughness and...
متن کاملDenitrification in riparian forests receiving agricultural discharges
Riparian forests can remove large amounts of nitrate from the groundwater discharges of adjacent uphill croplands. We review the mechanisms that could account for NO3 removal. Denitrification is hypothesized to be important, but measurement problems limit the relevant field data. We used large chambers (1-20 mZ) and tunable-diode laser infrared spectrophotometry to measure nitrous oxide (NzO) e...
متن کاملDirect measurements of the seasonality of emission factors from savanna fires in northern Australia
[1] Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows n...
متن کاملMultiscale control of flooding and riparian-forest composition in Lower Michigan, USA.
Despite general agreement that river-valley hydrology shapes riparian ecosystems, relevant processes are difficult to distinguish and often inadequately specified in riparian studies. We hypothesize that physical constraints imposed by broad-scale watershed characteristics and river valleys modify local site conditions in a predictable and probabilistic fashion. To test this hypothesis, we empl...
متن کاملNitrogen trace gas emissions from a riparian ecosystem in southern Appalachia.
In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N2O fluxes were 5.8, 2.0, and 76.7 ng N m(-2) S(-1) (1.83, 0.63, and 24.19 kg N ha(-1) y(-1)), respectively. Fluxes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of environmental quality
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2012